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RESEARCH

Precision turfgrass management must deal with obtaining 

information relative to the inherent spatial and temporal vari-

ability on a site for improved effi  ciency in management. Site-specifi c 

management requires specifi c information on the site characteristics. 

Vehicle-mounted spectral sensing devices are commercially available 

that have been used on turfgrass situations or may be adapted to 

provide fi eld mapping of turfgrass characteristics (Hansen and Jør-

gensen, 2001; Bell et al., 2002; Reusch et al., 2002; GreenSeeker, 

2006). Field-based spectral mapping must rely on spectral models 

predictive of specifi c turfgrass characteristics for either real-time use 

such as in variable-rate applications or for incorporation into global 

positioning system or geographic information system maps that are 

then used for management decisions. Spectral refl ectance response 

models based on one or two broadbands have been reported for turf-

grass characteristics such as turfgrass quality, color, degree of cover, 

drought stress, wear, and diseases (Nutter et al., 1993; Fenstermaker-

Shaulis et al., 1997; Trenholm et al., 1999, 2000; Bell et al., 2002).

Spectral relationships to specifi c plant parameters or responses 

may involve individual hyperspectral or broadbands, ratios as 

indices, normalized indices, derivatives, or regression equations 
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ABSTRACT

The objective of this study was to assess canopy 
broadband spectral refl ectance for turfgrasses 
under drought stress. Optimum turf quality (TQ) 
and leaf fi ring (LF) models were developed and 
compared based on two, three, and fi ve wave-
length bands. Sods of bermudagrass (Cynodon 
dactylon L. × C. transvaalensis Burtt-Davy), sea-
shore paspalum (Paspalum vaginatum Swartz), 
zoysiagrass (Zoysia japonica Steud.), and St. 
Augustinegrass [Stenotaphrum secundatum 
(Walt.) Kuntze], and seeded tall fescue (Festuca 
arundinacea Schreb.) were used in this study 
with three cultivars each of bermudagrass, 
seashore paspalum, and tall fescue. Traditional 
vegetation indices (VIs) based on two bands 
within 660 to 950 nm were not as sensitive as 
three to fi ve broadband models using a wider 
band range of 660 to 1480 nm. Optimum models 
were cultivar specifi c models, even within a spe-
cies. The broadband wavelength at R900 and 
R1200 should be considered in drought sensi-
tive spectral models since they were most often 
observed and exhibited high partial R2 values. 
These results suggest that mobile broadband 
spectral devices to map turfgrass responses to 
drought stress would benefi t by the availability 
of three to fi ve broadbands that could be user 
selected for optimum, cultivar specifi c models.
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(Broge and Leblanc, 2001; Thenkabail et al., 2000; Poss 

et al., 2006). Numerous vegetative indices (VIs) based on 

use of two wavelength bands have been reported in the 

literature using various hyperspectral (<4 nm band width) 

or broadband (10–50 nm width) wavelength bands (Poss 

et al., 2006). When hyperspectral bands or broadbands 

are used for calculation of VIs based on two wavelength 

bands or when more than two bands are used to develop 

multiple regression models that relate to a plant parameter 

such as leaf area index (LAI) or biomass, these spectral 

models have been found to be species or possibly genotype 

specifi c on other crops. Thenkabail et al. (2000) demon-

strated that 12 common spectral band regions provided the 

optimum relationships for crop biophysical characteristics 

across fi ve crops. These spectral regions exhibit common-

ality across plants because of their relationships to spe-

cifi c physical and physiological plant properties (Knipling, 

1970), However, when optimum models were developed 

using one to four wavelength variables, the models diff ered 

for crop (Thenkabail et al., 2000). They noted the same 

general spectral bands are involved in VIs or regression 

models for all plants, but species may diff er in refl ectance 

response at certain wavelengths within a general band 

region and, thereby, result in diff erent best model among 

species. Additionally, spectral refl ectance data have also 

been used to discriminate between species by using the 

same multiple wavelengths in regression models, but iden-

tifying diff erent spectral responses among species (Clark et 

al., 2005). Major et al. (2003) noted that cellulose, lignin, 

and protein absorption in the near-infrared (NIR) region 

could result in signifi cant diff erences among species and 

perhaps genotypes.

Hansen and Jørgensen (2001) and Reusch et al.(2002) 

described fi eld-mapping equipment capable of using up to 

fi ve user-selected wavelength bands. Flexibility in band 

selection (wavelength bands used and number of bands) 

could be important if the optimum bands diff ered with 

species and genotype; using more than two bands would 

allow for potentially more accurate models. Recently, best 

models were reported using hyperspectral bands for turf-

grass drought stress that were based on using more than two 

wavelength bands at the species level (Hutto et al., 2006) 

and among species and cultivars ( Jiang and Carrow, 2005). 

Leaf fi ring and turfgrass quality relationships to spectral 

responses were somewhat stronger when more than two 

bands were used, which supports the results of Thenkabail 

et al. (2000) for other crops and plant parameter relation-

ships where inclusion of more bands improved the model. 

Additionally, the specifi c bands exhibiting best correlations 

have been found to vary with species (Trenholm et al., 

2000; broadband data, two species) or species and genotype 

(Jiang and Carrow, 2005; hyperspectral band data).

Due to the potential for more accurate or fl exible fi eld 

spectral mapping models using two or more user-selected 

bands and the possibility for optimum models to be inter- 

or intraspecifi c rather than a uniform model for all grasses, 

the objective of this study was to assess canopy broadband 

spectral refl ectance models (two, three, and fi ve broadband 

models) for turf quality (TQ) and leaf fi ring (LF) responses 

to drought stress across turfgrass species and within spe-

cies. Species included bermudagrass (Cynodon dactylon L. × 

C. transvaalensis Burtt-Davy), seashore paspalum (Paspalum 

vaginatum Swartz), zoysiagrass (Zoysia japonica Steud.), and 

St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kun-

tze], which are commonly used warm-season turfgrasses, 

and tall fescue (Festuca arundinacea Schreb.) a cool-season 

turfgrass that can grow in the upper to midsouthern cli-

mates of the USA.

MATERIALS AND METHODS

Plant Materials
Sods were collected from mature fi eld plots on 24 Apr. 2001 

at the Griffi  n Campus of the University of Georgia including 

bermudagrass (B; ‘TifSport’, ‘TifEagle’, ‘Tifway’), seashore 

paspalum (SP; ‘Sea Isle 1’, ‘Sea Isle 2000’, ‘Temple’), zoysia-

grass (ZZ; ‘Meyer’), and St. Augustinegrass (SA; ‘Palmetto’), 

and seeded tall fescue (TF; ‘Plantation’, ‘Greystone’, ‘TULSA 

II’). All soil was removed from sods and grasses were grown 

in barrels fi lled with Profi le (Profi le Products LLC, Buff alo 

Grove, IL), a calcined illite clay and amorphous silica material, 

to provide a uniform root zone media based on the work of 

van Bavel et al. (1978). For seeded grasses, the quantity of seed 

was 10 g per barrel. Barrels were 0.65-m diameter by 0.90-m 

depth with surface area of 0.24 m2 with a volume of 206 L and 

with holes in the bottom for drainage. All grasses were mowed 

twice weekly using a hand clipper at 2.54 cm (B, ZZ, SP) or 

5.08 cm (SA, TF) with clippings removed. Granular fertilizer 

(N–P–K) applied to the barrels (in terms of kg N ha−1) was 97.6 

N on 2 April (6–2–0), 48.8 N on 28 April (15–5–15), 24.4 N 

on 9 May (15–5–15), 24.4 N on 16 May (15–5–15), 48.8 N on 

25 May (6–2–0), and 24.4 N on 31 May (13–0–13). Irrigation 

was applied as necessary to maintain healthy turfgrass and in 

suffi  cient volume to allow drainage.

Drought Stress and Spectral Refl ectance
Drought stress was initiated after bringing all containers to well-

watered conditions and then withholding water during dry-

down periods. A sensor-controlled, removable rainout shelter 

facility (12.8 by 30.5 m) was used to maintain dry-down con-

ditions. The rainout shelter was placed in its original position 

and was able to move automatically to cover all barrels when 

it rained and to move back after raining. The study consisted 

of three dry-downs with each period from 11 to 15 d. After 

each dry-down, TQ was allowed to fully recover to a nonstress 

level before the next dry-down started. The dry-down periods 

were 10–25 July, 20–31 Aug., and 10–21 Sept. 2001. The dura-

tion of each dry-down was determined by how rapidly TQ 

declined in response to drought stress, which allowed a range 

of drought stress symptoms occurring among diff erent grasses 

for collection of TQ, LF, and canopy spectral refl ectance data 

with all grasses exhibiting LF of at least >10% at the end of each  



CROP SCIENCE, VOL. 47, JULY–AUGUST 2007  WWW.CROPS.ORG 3

R
ep

ro
d

uc
ed

 fr
om

 C
ro

p
 S

ci
en

ce
. P

ub
lis

he
d

 b
y 

C
ro

p
 S

ci
en

ce
 S

oc
ie

ty
 o

f A
m

er
ic

a.
 A

ll 
co

p
yr

ig
ht

s 
re

se
rv

ed
.

across the three replicates, and the averaged data were com-

bined across three dry-downs and used for statistical analysis 

and model development for each individual grass. For the gen-

eral model of each species, data from individual grass within the 

species were combined. Data from all species were combined 

to generate a model over all 11 grasses. Spectral data collected 

on low incident radiation days (<300 W/m2) were not included 

in the analysis due to limited reliability of crop refl ectance and 

instrument limitations under low radiation.

RESULTS
All grasses exhibited a substantial decline in TQ and 

increased LF under the three drought stress periods with 

considerable diff erences among grasses. The detailed 

results of TQ and LF for each grass under drought stress 

have been described ( Jiang and Carrow, 2005). Diff er-

ences in TQ (6.8–4.9 with 9.0 ideal) and LF (12.3–55.2%) 

for all grasses under drought stress provided a range of 

responses for broadband spectral refl ectance relationships 

with these plant responses.

Vegetation Indices
In assessment of two broadband, wavelength VIs for cor-

relation with TQ and LF, only four grasses exhibited a 

signifi cant VI for TQ and none for LF (Table 1). The best 

VI diff ered for all four grasses which included three spe-

cies with Stress 2 (TifSport B, r = −0.56), IR/R (Sea Isle 

1 SP, r = 0.65), NDVI1 (Temple SP, r = 0.62), and Stress 

1 (Palmetto SA, r = 0.46). Broadband wavelengths rep-

resented in the signifi cant VI relationships for TQ were 

R710 and R810 nm (Stress 2), R60 and R950 nm (IR/R), 

and R710 and R760 nm (Stress 1 and NDVI1).

dry-down. Data for each grass for drought stress responses in 

terms of TQ and LF are presented by Jiang and Carrow (2005), 

with LF at the end of dry-downs ranging from 12.3% (Temple 

SP) to 55.2% (Tulsa II TF).

Spectral responses were related to TQ and LF as the plant 

parameters. Turf quality was rated visually based on color, 

shoot density, and uniformity, where 1 = brown, dead turf and 

9 = ideal dark-green color, density, and uniformity for the spe-

cies. Leaf fi ring refers to leaf chlorosis starting at leaf tips and 

margins. Initial injury is a yellowing but often progresses into 

a tan or brown color with death of the tan or brown areas. Leaf 

fi ring rating was based on percentage of leaves exhibiting the 

above symptoms (Carrow and Duncan, 2003).

Canopy spectral refl ectance was collected with a CropScan 

Multispectral Radiometer (CROPSCAN, Inc., Rochester, MN.). 

This broadband spectral device determined refl ectance in a 10 to 

15 nm band width centered around 660, 710, 760, 810, 900, 950, 

1200, and 1480 nm with matched upward and downward sensor 

arrays to minimize solar radiation eff ects with the incident radia-

tion used as a baseline for the refl ected radiation in the same band. 

The 950-, 1200-, and 1480-nm bands were chosen since they 

represent water bands. The radiometer was held at a height of 1 

m above canopy and measured about a 0.12-m2 area inside bar-

rel. The refl ectance readings were taken at 1300 h to minimize 

background noise. All measurements were taken daily during each 

dry-down period. The following indices related to canopy status 

were developed based on refl ectance:

Normalized diff erence vegetation index 1 

(NDVI1) = (R760 − R710)/(R760 + R710) (modifi ed 

from Gamon and Surfus, 1999)

Normalized diff erence vegetation index 2 

(NDVI2) = (R950 − R660)/(R950 + R660) (modifi ed 

from Trenholm et al., 1999)

Stress index 1 = R710/R760

Stress index 2 = R710/R810 (modifi ed, Trenholm et al., 

1999)

Leaf area index (refl ectance in the near-infrared radia-

tion divided by refl ectance in the red range [IR/R]) = 

R950/R660 (modifi ed from Trenholm et al., 1999)

Water band index = R700/R950 (modifi ed from Penuelas 

et al., 1997)

Experiment Design and Data Analysis
The experiment was a randomized complete block design with 

repeated dry-down cycles. A total of 11 grasses (fi ve species 

and selected cultivars or ecotypes for some species) was used 

with each individual grass replicated three times (three barrels) 

within each single dry-down. Correlation coeffi  cients (r), coef-

fi cient of determination (R2), and general linear model proce-

dures were determined using Statistical Analysis System (SAS 

Institute, 1987) to develop the relationship between canopy 

characteristics and refl ectance and models for TQ against refl ec-

tance. The optimum models were then summarized for each 

individual grass, each species, and all grasses combined. The 

partial coeffi  cient of determination (R2) for individual wave-

length bands exhibited in the model was analyzed to determine 

relative importance of a given band in a model.

Data of TQ, LF, and canopy spectral refl ectance within 

each treatment day were averaged for a single grass (cultivar) 

Table 1. Strongest correlation between turf quality and leaf 
fi ring indices and vegetation index (VI) of 11 grasses under 
drought stress.

Grass† Turf quality Leaf fi ring

Indices‡ r Indices‡ r

‘TifSport’ B Stress 2 −0.56* Stress 2 0.36

‘TifEagle’ B Stress 1 −0.41 IR/R −0.43

‘Tifway’ B Stress 2 −0.42 Stress 2 0.16

‘Sea Isle 1’ SP Stress 2 −0.30 Stress 2 0.14

‘Sea Isle 2000’ SP IR/R 0.65** IR/R −0.41

‘Temple’ SP NDVI1 0.62** NDVI1 −0.16

‘Plantation’ TF NDVI1 0.37 NDVI2 0.11

‘Greystone’ TF Stress 2 −0.26 Stress 2 0.43

‘Tulsa II’ TF NDVI1 0.42 Stress 2 0.31

‘Meyer’ ZZ NDVI1 0.35 NDVI1 0.38

‘Palmetto’ SA Stress 1 0.46* Stress 1 −0.31

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

†B, bermudagrass; SP, seashore paspalum; TF, tall fescue; ZZ, zoysiagrass; SA, St. 

Augustinegrass.

‡IR/R, refl ectance in the near-infrared radiation divided by refl ectance in the red 

range; NDVI, normalized difference vegetation index. NDVI1 = (R760 − R710)/(R760 

+ R710); NDVI2 = (R950 − R660)/(R950 + R660); Stress index 1 = R710/R760; 

Stress index 2 = R710/R810; Leaf area index (IR/R) = R950/R660; Water band 

index = R700/R950.
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Three Broadband Wavelength Models

Using three broadband wavelengths from the eight spec-

tral bands that were measured, optimum models were 

developed for TQ and spectral refl ectance relationships 

for each grass (Table 2). Signifi cant models for all grasses 

were developed with a range of R2 from 0.40 to 0.74. Each 

model was unique for the specifi c grass (cultivar) and the 

broadband wavelength combinations within the models 

varied with grass (Table 2).

Based on partial coeffi  cient of determination, the most 

signifi cant bands for TQ spectral relationships were R1200 

(fi ve grasses); R710 (four grasses); and R810, R900, and 

R1480 (two grasses each) (Table 3). No spectral region 

was present in all cultivar models for bermudagrass and 

seashore paspalum. In contrast, R1200 was signifi cant and 

present in all tall fescue cultivar models. For the bands 

exhibiting signifi cant partial R2 values, no particular band 

had higher values compared to the other bands across all 

grasses. Most cultivars demonstrated at least two signifi -

cant spectral regions within their model with the excep-

tions being the seashore paspalums, Greystone TF, and 

Palmetto SA, all with only one signifi cant band.

Signifi cant optimum three broadband wavelength 

models for LF and spectral refl ectance were observed 

for each grass except Temple SP. (Table 4). The range of 

signifi cant R2 values was 0.38 to 0.76. Spectral regions 

observed for LF spectral refl ectance relationships with a 

signifi cant partial coeffi  cient of determination included: 

R1200 (fi ve grasses); R900 and R950 (four grasses each); 

R810 (three grasses); and R660 and R1480 (one grass 

each) (Table 5). The highest R2 values were noted in the 

R950, R900, and R1250 bands. As was noted for the TQ 

models, the R1200 band was evident in all tall fescue cul-

tivars for LF models. No other species had the same band 

in each cultivar model.

Five Band Wavelength Models
Use of fi ve broadbands resulted in signifi -

cant, optimum regression models for each 

grass when relating TQ to spectral refl ec-

tance (Table 6). For bermudagrass, seashore 

paspalum, and tall fescue, a combined model 

was developed across all cultivars of the spe-

cies (Table 6). The resulting model was sig-

nifi cant for each of these three species, but 

with a lower R2 than expressed for individual 

cultivar models within the species. The range 

of R2 across all grasses was 0.47 to 0.78. Partial 

coeffi  cient of determination analysis revealed 

that R710 and R900 bands were involved in 

models of four grasses each, with R1480 and 

R1200 in three grass models, while all other 

bands were in one or two grass models (Table 

7). The highest partial R2 values generally 

occurred within the R900 band.

Signifi cant LF spectral refl ectance models 

using fi ve wavelength bands were observed 

for six grasses with a range of R2 for signifi -

cant models of 0.54 to 0.83 (Table 8). When 

cultivars were combined within a species, a 

signifi cant species model resulted even when 

some cultivars within the species did not 

exhibit a signifi cant model. Bands that were 

in the most individual grass models were 

R1200 (fi ve grasses) and R950 (four grasses) 

with the highest partial R2 values evident at 

R950 (Table 9).

DISCUSSION
Spectral mapping of drought stress on turf-

grasses would be benefi cial for identifying 

Table 2. The optimum three-wavelength model for turf quality (TQ) and coef-
fi cient of determination (R2) under drought stress for each grass.

Grass† Model‡ (R2)

‘TifSport’ B TQ = 6.361 − 0.137 R710 + 0.036 R810 + 0.063 R1480 0.66***

‘TifEagle’ B TQ = 4.094 + 0.312 R660 − 0.478 R710 + 0.139 R950 0.74***

‘Tifway’ B TQ = 5.164 − 0.124 R710 + 0.055 R900 + 0.071 R1480 0.59**

‘Sea Isle 1’ SP TQ = 3.273 + 0.163 R950 − 0.117 R1200 + 0.04 R1480 0.44*

‘Sea Isle 2000’ SP TQ = 6.371 − 0.198 R710 + 0.063 R950 + 0.049 R1480 0.57**

‘Temple’ SP TQ = 6.998 − 0.216 R710 + 0.07 R760 + 0.029 R1480 0.40*

‘Plantation’ TF TQ = 6.448 + 0.175 R710 + 0.23 R810 − 0.323 R1200 0.63**

‘Greystone’ TF TQ = 5.81 − 0.105 R760 + 0.226 R810 − 0.14 R1200 0.51**

‘Tulsa II’ TF TQ = 3.83 + 0.076 R810 + 0.078 R900 − 0.12 R1200 0.58**

‘Meyer’ ZZ TQ = 3.092 − 0.29 R810 + 0.201 R950 + 0.196 R1200 0.63**

‘Palmetto’ SA TQ = 3.554 − 0.233 R710 + 0.101 R900 + 0.154 R1480 0.60**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

***Signifi cant at 0.001 probability level.

†B, bermudagrass; SP, seashore paspalum; TF, tall fescue; ZZ, zoysiagrass; SA, St. Augustinegrass.

‡R, refl ectance at specifi ed wavelength (e.g., R710 means refl ectance at 710 nm).

Table 3. Partial coeffi cient of determination (R2) in the three-wavelength turf 
quality model for each grass.

Grass† R660‡ R710 R760 R810 R900 R950 R1200 R1480

‘TifSport’ B – 0.24** – 0.36** – – – 0.06

‘TifEagle’ B 0.08 0.26** – – – 0.41** – –

‘Tifway’ B – 0.02 – – 0.40** – – 0.17*

‘Sea Isle 1’ SP – – – – – 0.19 0.21* 0.04

‘Sea Isle 2000’ SP – 0.37** – – – 0.10 – 0.09

‘Temple’ SP – 0.31* 0.05 – – – – 0.04

‘Plantation’ TF – 0.15* – 0.19 – – 0.30* –

‘Greystone’ TF – – 0.03 0.11 – – 0.37** –

‘Tulsa II’ TF – – – 0.03 0.35** – 0.20* –

‘Meyer’ ZZ – – – 0.21* – 0.23* 0.19* –

‘Palmetto’ SA – 0.13 – – 0.17 – – 0.30**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

†B, bermudagrass; SP, seashore paspalum; TF, tall fescue; ZZ, zoysiagrass; SA, St. Augustinegrass.

‡R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).
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spatial and temporal variation relative to drought stress 

and other stresses that may infl uence spectral refl ectance. 

This information could be used to make irrigation system 

adjustments in either design for more uniform application 

or scheduling for site-specifi c irrigation needs. Develop-

ment of drought sensitive spectral models that have a strong 

relationship with TQ or LF is necessary to obtain useful 

information. Three issues in broadband model develop-

ment for drought stress on turfgrasses are (i) the infl uence 

of the number of bands included in the model on model 

strength, (ii) which bands are appropriate to obtain the 

optimum model, and (iii) whether models diff er at the 

inter- or intraspecifi c level.

The most common spectral models for relating to 

plant characteristics are VIs. Common character-

istics of VIs are (i) whether broadband or narrow 

band-based, they are almost always based on two 

spectral bands, and (ii) they use bands between 

430 and 1100 nm (Poss et al., 2006). Normal-

ized diff erence vegetation index, determined by 

broadband spectral refl ectance under stresses other 

than drought, is a commonly used indicator for 

green biomass, leaf area, and stress status in plants 

(Daughtry et al., 1992; Gamon et al., 1995; Penu-

elas et al., 1997) and was found correlated to TQ 

and turf color under various nondrought stresses 

(Trenholm et al., 1999; Bell et al., 2002; Jiang et 

al., 2003) or biomass (Fenstermaker-Shaulis et al., 

1997). The VI IR/R, associated with shoot bio-

mass, and the Stress 1 and 2 VIs have also been 

related to TQ (Daughtry et al., 1992; Trenholm 

et al., 1999, 2000).

The broadband-based VIs used in our drought 

stress study demonstrated a signifi cant relation-

ship with TQ for only four grasses and no rela-

tionship with LF (Table 1). The best VI for the 

four grasses diff ered with each grass. The most 

common broadband involved was R710 in three 

of the VIs. Broadband spectral refl ectance data 

and turfgrass TQ or LF as aff ected by drought as 

the specifi c stress are limited. On drought stressed 

tall fescue, Fenstermaker-Shaulis et al. (1997) 

observed signifi cant relationships for broadband-

based NDVI (R600–650; R800–890) versus bio-

mass (r = 0.55), canopy temperature (r = 0.54), 

and tissue moisture content (r = 0.90). Hutto et 

al. (2006:1566) on drought-stressed bentgrass 

(Agrostis stolonifera L.) reported that “broadband 

widths or vegetative indices were not successful 

in diff erentiating between stresses.” Our results 

and the above reports suggest that broadband VIs 

based on two bands may be better for some species 

or cultivars than for others for estimating TQ and 

drought stress relationships; when LF is the plant 

parameter of interest, VIs may be less accurate than for 

TQ; the best VI to use may be dependent on the cultivar; 

and there is no consistent drought-sensitive VI, but that 

the R710 band may be useful, which is a red-edge band 

sensitive to vegetation stress and a band region common 

in optimum hyperspectral models of many plants (Thenk-

abail et al., 2004).

As the number of broadband wavelengths increased 

from two, three, and fi ve bands (with the three and fi ve band 

models developed by regression) the number of signifi cant 

models for TQ out of the 11 grasses increased from 4, 11, and 

11, respectively (Table 1, 2, and 6). Likewise, the R2 or partial 

R2 value increased for all grasses, as the number of broad-

band wavelengths in the model increased, except Temple SP 

Table 4. The optimum three-wavelength band model for leaf fi ring (LF) 
and coeffi cient of determination (R2) under drought stress for each 
grass.

Grass† Model‡ (R2)

‘TifSport’ B LF = 24.805 + 2.413 R710 − 0.827 R1200 − 1.141 R1480 0.40*

‘TifEagle’ B LF = 76.787 − 7.734 R660 + 11.842 R710 − 3.303 R950 0.76***

‘Tifway’ B LF = 39.314 + 1.318 R760 − 1.678 R950 − 0.728 R1480 0.38*

‘Sea Isle 1’ SP LF = 84.993 − 2.824 R950 + 1.950 R1200 − 1.863 R1480 0.45*

‘Sea Isle 2000’ SP LF = 56.102 + 2.41 R710 − 1.286 R900 − 1.412 R1480 0.40*

‘Temple’ SP LF = 14.03 + 0.287 R810 + 0.429 R900 − 0.935 R950 0.16

‘Plantation’ TF LF = 11.828 − 3.973 R660 − 5.353 R810 − 7.229R1200 0.64**

‘Greystone’ TF LF = 79.885 − 4.139 R810 − 1.000 R900 + 4.628 R1200 0.65**

‘Tulsa’ II TF LF = 41.175 − 5.061 R810 + 5.844 R1200 − 1.896 R1480 0.59**

‘Meyer’ ZZ LF = 104.11 + 6.842 R810 − 5.071 R950 − 4.298 R1200 0.74***

‘Palmetto’ SA LF = 65.826 + 3.325 R710 − 1.577 R900 − 2.311R1480 0.60**

Overall LF = 31.730 + 2.360 R710 − 6.146 R810 + 4.978 R900 0.64*

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

***Signifi cant at 0.001 probability level.

†B, bermudagrass; SP, seashore paspalum; TF, tall fescue; ZZ, zoysiagrass; SA, St. Augustinegrass.

‡R, refl ectance at specifi ed wavelength (e.g., R710 means refl ectance at 710 nm).

Table 5. Partial coeffi cient of determination (R2) in the three-wavelength 
leaf fi ring model for each grass.

Grass† R660‡ R710 R760 R810 R900 R950 R1200 R1480

‘TifSport’ B – 0.08 – – – – 0.28* 0.04

‘TifEagle’ B 0.15* 0.10 – – – 0.51** – –

‘Tifway’ B – – 0.06 – – 0.26* – 0.07

‘Sea Isle 1’ SP – – – – – 0.25* 0.13 0.07

‘Sea Isle 2000’ SP – 0.04 – – 0.26* – – 0.10

‘Temple’ SP – – – 0.01 0.01 0.14 – –

‘Plantation’ TF 0.07 – – 0.13* – – 0.44** –

‘Greystone’ TF – – – 0.13* 0.36** – 0.17* –

‘Tulsa II’ TF – – – 0.07 – – 0.42** 0.11

‘Meyer’ ZZ – – – 0.15* – 0.46** 0.13* –

‘Palmetto’ SA – 0.09 – – 0.25* – – 0.27**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

†B, bermudagrass; SP, seashore paspalum; TF, tall fescue; ZZ, zoysiagrass; SA, St. Augustinegrass.

‡R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).
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where NDVI1 had the highest R2. For TQ spectral relation-

ships of grasses under drought stress, each grass had a unique 

optimum model for the two (VIs), three, and fi ve broadband 

wavelength models (Tables 1, 2, and 6).

For LF and spectral relationships of grasses exposed to 

drought stress, the number of signifi cant models observed 

as the number of broadband wavelengths increased was 

two bands (0), three bands (10), and fi ve bands 

(6). While inclusion of fi ve bands resulted in 

only six signifi cant models, four of these grasses 

showed a substantial increase in partial R2 com-

pared to the three band model (Tables 1, 4, 8). 

The lower sensitivity of spectral models in rela-

tionship with LF versus TQ may be due to the 

observation that as drought was imposed, TQ 

was aff ected earlier in the dry-down than LF.

This research demonstrated that for TQ 

and LF broadband spectral models in response 

to drought stress, a stronger model generally 

resulted by inclusion of more wavelength bands 

and the optimum model was specifi c to the grass. 

Our fi ndings were in agreement with Thenk-

abail et al. (2000) for fi ve crop species where 

the biophysical characteristics measured were 

wet biomass, LAI, plant height, and yield. They 

reported that models diff ered with crop and that 

the four band models performed marginally 

better than two band models. In a later study, 

Thenkabail et al. (2004) reported that fi ve bands 

accounted for a high percentage of the variabil-

ity in models to separate species and separation 

accuracies of greater that 90% occurred when using 13 to 

22 bands. The wavelength bands in their study were nor-

mally about 10 nm in width since they included several 

adjacent hyperspectral bands. Bell et al. (2002) and Tren-

holm et al.(2000), using a C
3
 and C

4
 grass species, found 

that the R2 for NDVI versus turf color, percentage of plant 

cover, or TQ varied considerably with species.

Table 6. Optimum fi ve-wavelength model for turf quality (TQ) and coeffi cient of determination (R2) under drought stress for 
each species and cultivars or ecotypes within species.

Grass Model† R2

Bermudagrass TQ = 5.431 + 0.299 R660 − 0.461 R710 + 0.044 R760 + 0.054 R900 + 0.067 R1200 0.57***

‘TifSport’ TQ = 6.324 + 0.199 R660 − 0.368 R710 + 0.061R760 + 0.012 R900 + 0.077 R1200 0.72**

‘TifEagle’ TQ = 4.05 + 0.399 R660 − 0.557 R710 + 0.049 R760 + 0.089 R900 + 0.058 R1200 0.78***

‘Tifway’ TQ = 5.56 + 0.274 R660 − 0.435 R710 + 0.035 R760 + 0.059 R900 + 0.074 R1200 0.67**

Seashore paspalum TQ = 6.075 − 0.222 R710 + 0.102 R760 + 0.028 R950 − 0.054 R1200 + 0.051R1480 0.33***

‘Sea Isle 1’ TQ = 2.302 − 0.184 R710 + 0.247 R760 + 0.118 R950 − 0.246 R1200 + 0.107 R1480 0.56*

‘Sea Isle 2000’ TQ = 5.917 − 0.193 R710 + 0.08 R760 + 0.048 R950 − 0.066 R1200 + 0.078 R1480 0.63*

‘Temple’ TQ = 6.769 − 0.26 R710 + 0.142 R760 + 0.002 R950 − 0.063 R1200 + 0.056 R1480 0.47*

Tall fescue TQ = 5.806 + 0.166 R710 − 0.211 R760 + 0.322 R810 + 0.054 R900 − 0.269 R1200 0.56***

‘Plantation’ TQ = 5.689 + 0.19 R710 + 0.027 R760 + 0.157 R810 + 0.038 R900 − 0.294 R1200 0.68**

‘Greystone’ TQ = 3.992 + 0.26 R710 − 0.66 R760 + 0.547 R810 + 0.205 R900 − 0.254 R1200 0.78**

‘Tulsa’ II TQ = 6.255 + 0.151 R710 − 0.347 R760 + 0.423 R810 + 0.040 R900 − 0.24 R1200 0.61*

‘Meyer’ ZZ‡ TQ = 3.704 + 0.303 R660 − 0.352 R710 − 0.24 R810 + 0.198 R950 + 0.189 R1200 0.70**

‘Palmetto’ SA§ TQ = 3.895 − 0.28 R710 + 0.103 R810 + 0.075 R900 − 0.096 R1200 + 0.148 R1480 0.71**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

***Signifi cant at 0.001 probability level.

†R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).

‡ZZ, zoysiagrass.

§SA, St. Augustinegrass.

Table 7. Partial coeffi cient of determination (R2) in the fi ve-wavelength turf 
quality model for each species and within species.

Grass R660† R710 R760 R810 R900 R950 R1200 R1480

Bermuda 0.11*** 0.04 0.07** – 0.21*** – – 0.15***

‘TifSport’ 0.04 0.27** 0.31* – 0.01 – – 0.09

‘TifEagle’ 0.09* 0.08 0.03 – 0.47** – – 0.12*

‘Tifway’ 0.06 0.02 0.03 – 0.40** – – 0.17*

Seashore paspalum – 0.24*** 0.01 – – 0.04 0.03 0.02

‘Sea Isle 1’ – 0.03 0.09 – – 0.19 0.21* 0.04

‘Sea Isle 2000’ – 0.37** 0.04 – – 0.10 0.02 0.09

‘Temple’ – 0.24* 0.05 – – 0.07 0.07 0.04

Tall fescue – 0.03 0.03 0.20*** 0.19*** – 0.11** –

‘Plantation’ – 0.05 0.26** 0.03 0.32* – 0.02 –

‘Greystone’ – 0.14* 0.06 0.03 0.35** – 0.20* –

‘Tulsa II’ – 0.07 0.13 0.12 0.12 – 0.17 –

‘Meyer’ ZZ‡ 0.04 0.03 – 0.21* – 0.23* 0.19* –

‘Palmetto’ SA§ – 0.13 – 0.05 0.17 – 0.07 0.30**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

***Signifi cant at 0.001 probability level.

†R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).

‡ZZ, zoysiagrass

§SA, St. Augustinegrass.
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While Hutto et al. (2006) did not fi nd 

any signifi cant broadband spectral relation-

ships of turfgrass to drought stress, they were 

able when using hyperspectral refl ectance 

data in a discriminate analysis approach to 

identify stressed areas at >98% of the time 

by using 14 wavebands between 861 and 887 

nm or 33 bands between 719 and 799 nm. 

Jiang and Carrow (2005) focused on hyper-

spectral approaches, in a companion paper 

to this one, and obtained signifi cant spectral 

refl ectance models for TQ on seven out of 

11 grasses (R2 range of 0.32–0.70) and for LF 

on eight grasses (R2 range of 0.27–0.71). The 

models diff ered with cultivar and included 

two to three narrow band wavelengths 

selected from the 10 wavelengths between 

400 and 1100 nm with the best correlations 

of refl ectance to TQ or LF.

The VIs we used were based on broad-

band wavelengths between R660 to R950 

nm, which is within the spectral range of 

R430 to R1100 nm used for the various VIs 

published in the literature (Poss et al., 2006). 

The three and fi ve band regression models for TQ and LF, 

however, included all broadbands from R660 to R950 plus 

the two water bands of R1200 and R1440 nm. Based on the 

three and fi ve band models for TQ spectral relationships, the 

most prevalent bands in the models were the water band at 

R1200 nm and the R900-nm band (Table 3 and 7). Broad-

band wavelengths most common in the LF spectral mod-

els using three or fi ve bands were R1200, R900, and R950 

nm, where R950 nm is another water band sensitive to tissue 

moisture content (Tables 5 and 9) (Thenkabail et al., 2000). 

Other studies also found that refl ectance at the 950- to 970-

nm region were an indicator of plant water status (Penuelas 

et al., 1993). Thenkabail et al. (2000, 2004) noted that the 

915-nm band was one of the bands often observed in opti-

mal hyperspectral models and represents the NIR refl ectance 

peak that is sensitive to total chlorophyll, biomass, LAI, and 

Table 8. Optimum fi ve-wavelength band models for leaf fi ring (LF) and coeffi cient of determination (R2) under drought stress for 
each species and cultivars/ecotypes within species.

Grass Model† R2

Bermudagrass LF = 34.998 − 11.094 R660 + 14.413 R710 − 0.596 R760 − 2.053 R950 − 0.958R1480 0.52***

‘TifSport’ LF = 22.523 − 10.207 R660 + 13.401 R710 − 1.332 R760 − 0.901 R950 − 1.504 R1480 0.52

‘TifEagle’ LF = 79.441 − 6.808 R660 + 10.892 R710 + 0.709 R760 − 3.720 R950 − 0.567 R1480 0.78***

‘Tifway’ LF = 29.478 − 5.780 R660 + 7.295 R710 + 0.577 R760 − 1.886 R950 − 1.003 R1480 0.47

Seashore paspalum LF = 32.805 − 3.065 R660 + 4.827 R710 − 1.605 R950 + 0.401R1200 − 0.904 R1480 0.20*

‘Sea Isle 1’ LF = 82.981 − 0.46 R660 + 0.692 R710 − 2.841 R950 + 1.960 R1200 − 1.867 R1480 0.41

‘Sea Isle 2000’ LF = 49.373 − 4.916 R660 + 7.37 R710 − 2.924 R950 + 1.187 R1200 − 1.495 R1480 0.54*

‘Temple’ LF = 18.429 − 0.167 R660 + 0.735 R710 − 0.598 R950 + 0.250 R1200 − 0.580 R1480 0.19

Tall fescue LF = 26.645 − 3.681 R660 + 4.516 R760 − 8.082 R810 − 0.889 R900 + 6.611 R1200 0.60***

‘Plantation’ LF = 17.736 − 4.70 R660 + 1.299 R760 − 5.572 R810 − 0.709 R900 + 7.013 R1200 0.65*

‘Greystone’ LF = 72.759 − 5.989 R660 + 13.809 R760 − 13.781 R810 − 4.038 R900 + 7.082 R1200 0.83***

‘Tulsa II’ LF = 27.011 − 1.732 R660 + 5.394 R760 − 8.079 R810 − 0.455 R900 + 4.823 R1200 0.54

‘Meyer’ ZZ‡ LF = 91.069 − 6.734 R660 + 7.442 R710 + 5.772 R810 − 5.007 R950 − 3.999 R1200 0.80***

‘Palmetto’ SA§ LF = 68.446 + 3.499 R710 − 0.287 R810 − 1.976 R900 + 0.685 R950 − 2.547 R1480 0.61*

*Signifi cant at 0.05 probability level.

***Signifi cant at 0.001 probability level.

†R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).

‡ZZ, zoysiagrass

§SA, St. Augustinegrass.

Table 9. Partial coeffi cient of determination (R2) in the fi ve-wavelength leaf fi ring 
model for each species and within species.

Grass R660† R710 R760 R810 R900 R950 R1200 R1480

Bermuda 0.24*** 0.07* 0.01 – – 0.17** – 0.04

‘TifSport’ 0.08 0.10 0.23* – – 0.03 – 0.07

‘TifEagle’ 0.09* 0.29** 0.01 – – 0.38** – 0.01

‘Tifway’ 0.08 0.10 0.01 – – 0.26* – 0.03

Seashore paspalum 0.02 0.04 – – – 0.09* 0.01 0.04

‘Sea Isle 1’ 0.0002 0.001 – – – 0.22* 0.12 0.07

‘Sea Isle 2000’ 0.05 0.04 – – – 0.19 0.19* 0.06

‘Temple’ 0.0002 0.02 – – – 0.14 0.01 0.02

Tall fescue 0.04 – 0.03 0.29*** 0.15** – 0.10* –

‘Plantation’ 0.10* – 0.002 0.30*** 0.01 – 0.24** –

‘Greystone’ 0.13** – 0.04 0.13* 0.36** – 0.17* –

‘Tulsa II’ 0.01 – 0.03 0.06 0.02 – 0.42** –

‘Meyer’ ZZ‡ 0.04 0.01 – 0.24* – 0.38** 0.13* –

‘Palmetto’ SA§ – 0.09 – 0.05 0.20* 0.01 – 0.26**

*Signifi cant at 0.05 probability level.

**Signifi cant at 0.01 probability level.

***Signifi cant at 0.001 probability level.

†R, refl ectance at specifi ed wavelength (e.g., R660 means refl ectance at 660 nm).

‡ZZ, zoysiagrass.

§SA, St. Augustinegrass.
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protein. The R900 band range was not included in the bands 

used by Trenholm et al. (1999, 2000) or in other turfgrass 

studies involving broadband refl ectance (Fenstermaker-

Shaulis et al., 1997; Bell et al., 2002). Further investigation of 

this band in VIs or multiple regression models for relation-

ship to drought stress or other turfgrass parameters may be 

worthwhile.

This research indicates that broadband-based spectral 

data can be used to monitor TQ and LF plant responses to 

increasing drought stress, but (i) traditional VIs based on two 

bands within 660 to 950 nm may not be as sensitive as three 

to fi ve band models using a wider band range of 660 to 1480 

nm, (ii) cultivar specifi c models, even within a species, should 

be considered to obtain highest sensitivity, and (iii) the bands 

at R900 and R1200 should be considered in drought-sensi-

tive spectral models. Additionally, mobile broadband spectral 

devices to map turfgrass responses to drought stress would 

benefi t by the availability of three to fi ve broadbands that 

could be user selected for optimum, cultivar specifi c models. 

To develop the optimum band combination, a site could be 

mapped using all sensors and then the optimum model deter-

mined based on multiple regression methods.
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